Ta có:x(x+1)(x+2)(x+3)=y2(1)=>[x(x+3)][(x+1)(x+2)]=y2
=>(x2 +3x)(x2 +3x+2)=y2
Đặt x2+3x+1=a
Khi đó:(a-1)(a+1)=y2=>a2-1=y2=>a2-y2=1=>(a-y)(a+y)=1
=>a-y=a+y(=1;-1)=>2y=0=>y=0(2)
Thay (2) vào (1) ta có:x(x+1)(x+2)(x+3)=0
=>x=0 hoặc x+1=0 hoặc x+2=0 hoặc x+3=0
=>x\(\in\){0;-1;-2;-3}
Vậy (y;x)\(\in\){(0;0);(0;-1);(0;-2);(0;-3)}