Tìm tất cả các nghiệm nguyên dương của phương trình :\(2x^2y-1=x^2+3y\)
cho x, y, z là nghiệm bất phương trình \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\xy+yz+zx=4\end{matrix}\right.\)
Chứng minh rằng \(-\dfrac{8}{3}\) ≤ x, y, z ≤ \(\dfrac{8}{3}\)
giải phương trình nghiệm nguyên:
\(5\left(x^2+y^2+xy\right)=7\left(x+2y\right)\)
giải phương trình nghiệm nguyên:
\(\frac{x}{y}+\frac{y}{z+1}+\frac{z}{x}=\frac{5}{2}\)
giải các phương trình sau : a) \(\sqrt{x^2+2x}\) = -2x2 - 4x + 3 ; b) \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = x2 + 3x - 4 . Hướng dẫn : a) Đặt y = \(\sqrt{x^2+2x}\) , y>=0 , ta được phương trình y = -2y2 +3 b) Vì (x+1)(x+2) = x2 +3x + 2 nên đặt y = \(\sqrt{x^2+3x+2}\) , y >= 0 , ta được phương trình y = y2 - 6
số nghiệm nguyên của bất phương trình \(\left(x^2-5x+4\right)\sqrt{x^2-9}\le0\) ?
giải các phương trình sau : a) \(\sqrt{x^2+2x}\) = -2x2 - 4x + 3 ; b) \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = x2 + 3x - 4 . Hướng dẫn : a) Đặt y = \(\sqrt{x^2+2x}\) , y>=0 , ta được phương trình y = -2y2 +3 b) Vì (x+1)(x+2) = x2 +3x + 2 nên đặt y = \(\sqrt{\left(x+1\right)\left(x+2\right)}\) , y>=0 , ta được phương trình y = y2 - 6
giải các phương trình sau : a) \(\sqrt{x^2+2x}\) = -2x2 - 4x + 3 ; b) \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = x2 + 3x - 4 .
Hướng dẫn : a) Đặt y= \(\sqrt{x^2+2x}\), y>=0 , ta được phương trình y = -2y2 +3
b) Vì (x+1)(x+2) = x2 +3x + 2 nên đặt y = \(\sqrt{x^2+3x+2}\), y>=0 , ta được phương trình y = y2 - 6
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)