Lời giải:
ĐK: $x\leq \frac{3}{2}$
Đặt $\sqrt{3-2x}=a(a\geq 0)$ thì $2x=3-a^2$
PT $\Leftrightarrow (2x+2)\sqrt{3-2x}=24x^2-20x$
$\Leftrightarrow (5-a^2)a=6(3-a^2)^2-10(3-a^2)$
$\Leftrightarrow 6a^4+a^3-26a^2-5a+24=0$
$\Leftrightarrow (a-1)(6a^3+7a^2-19a-24)=0$
$\Leftrightarrow (a-1)(2a+3)(3a^2-a-8)=0$
Vì $a\geq 0$ nên $a=1$ hoặc $a=\frac{1+\sqrt{97}}{6}$
Thay vào thu được $x=1$ hoặc $x=\frac{5-\sqrt{97}}{36}$