Lời giải:
Đặt \(\sqrt{2x+3}=t(t\geq 0)\)
PT tương đương:
\(4(2x+3)\sqrt{2x+3}=4x^2+20x+12\)
\(\Leftrightarrow 4(2x+3)\sqrt{2x+3}=(2x+3)^2+4(2x+3)-9\)
\(\Leftrightarrow 4t^3=t^4+4t^2-9\)
\(\Leftrightarrow t^4-4t^3+4t^2-9=0\)
\(\Leftrightarrow t^3(t-3)-t^2(t-3)+(t-3)(t+3)=0\)
\(\Leftrightarrow (t-3)(t^3-t^2+t+3)=0\)
\(\Leftrightarrow (t-3)(t+1)(t^2-2t+3)=0\)
Vì \(t\geq 0\Rightarrow t+1\geq 1>0\)
\(t^2-2t+3=(t-1)^2+2\geq 2>0\forall t\in\mathbb{R}\)
Do đó \(t-3=0\Leftrightarrow t=3\)
\(\Leftrightarrow \sqrt{2x+3}=3\Leftrightarrow 2x+3=9\Leftrightarrow x=3\)
Vậy \(x=3\)