giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{3x}\left(1+\dfrac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\dfrac{1}{x+y}\right)=4\sqrt{2}\end{matrix}\right.\)
Giải ptrinh :
\(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(3x^2+3x+2=\left(x+6\right)\sqrt{3x^2-2x-3}\)
Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Giải phương trình:
1, \(\left(x+3\right)\left(3x^4+8x^2+12x+21\right)=5\left(x^2+1\right)^3\)
2, \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5x^2=0\)
3, \(\dfrac{x^2+x+1}{x+1}+\dfrac{x^2+2x+2}{x+2}-\dfrac{x^2+3x+3}{x+3}-\dfrac{x^2+4x+4}{x+4}=0\)
4, \(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2.\dfrac{x^2+36}{x^2-36}\)
Giải các phương trình sau:
1. \(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
2. \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
3. \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
4. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
5. \(x=\left(\sqrt{x}+2\right)\left(1-\sqrt{1-\sqrt{x}}\right)\)
6. \(2\sqrt[3]{2x-1}=x^3+1\)
7. \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
Giải phương trình:
\(\sqrt{x\left(3x+1\right)}-\sqrt{x\left(x-1\right)}=2\left|x\right|\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right).\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)