Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Gia Hân

Giải phương trình:

a.2x4-21x3+74x2-105x+50=0

b.x4-x3-10x2+2x+4=0

Y
26 tháng 5 2019 lúc 21:51

b) \(\Leftrightarrow x^2\left(x^2+2x-2\right)-3x\left(x^2+2x-2\right)-2\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left(x^2-3x-2\right)\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2=0\\x^2+2x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{3}{2}\right)^2=\frac{17}{4}\\\left(x+1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{2}=\frac{\sqrt{17}}{2}\\x-\frac{3}{2}=-\frac{\sqrt{17}}{2}\\x+1=\sqrt{3}\\x+1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{17}}{2}\\x=\frac{3-\sqrt{17}}{2}\\x=\sqrt{3}-1\\x=-1-\sqrt{3}\end{matrix}\right.\) ( TM )

Y
26 tháng 5 2019 lúc 21:46

a) Dễ thấy x = 0 không là nghỉ=ệm của pt đã cho

Chia cả 2 vế của pt cho \(x^2\ne0\) ta đc :

\(2x^2-21x+74-\frac{105}{x}+\frac{50}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\frac{25}{x^2}+10\right)-21\left(x+\frac{5}{x}\right)+54=0\)

\(\Leftrightarrow2\left(x+\frac{5}{x}\right)^2-21\left(x+\frac{5}{x}\right)+54=0\)

\(\Leftrightarrow2t^2-21t+54=0\) ( với \(t=x+\frac{5}{x}\) )

\(\Leftrightarrow\left(2t-9\right)\left(t-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{9}{2}\\t=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\frac{5}{x}=\frac{9}{2}\\x+\frac{5}{x}=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-\frac{9}{2}x+5=0\\x^2-6x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{9}{4}\right)^2=\frac{1}{16}\\\left(x-1\right)\left(x-5\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{9}{4}=\frac{1}{4}\\x-\frac{9}{4}=-\frac{1}{4}\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=2\\x=1\\x=5\end{matrix}\right.\) ( TM )

Vậy tập nghiệm của pt đã cho là \(S=\left\{\frac{5}{2};2;1;5\right\}\)


Các câu hỏi tương tự
Phạm Thùy Trang
Xem chi tiết
An Nguyễn
Xem chi tiết
Scarlett
Xem chi tiết
lê hoài nam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Lê Việt Anh
Xem chi tiết
trinh lan
Xem chi tiết
đăng2k7:)))
Xem chi tiết