b. \(\left(2x+1\right)+\left(4x+3\right)+\left(6x+5\right)+...+\left(100x+99\right)=7600\)
\(\rightarrow\left(2x+4x+6x+...+100x\right)+\left(1+3+5+...+99\right)=7600\)
\(\rightarrow\frac{\left(2x+100x\right).50}{2}+\frac{\left(1+99\right).50}{2}=7600\)
\(\rightarrow51x.50+50.50=7600\)
\(\rightarrow51x.50+2500=7600\)
\(\rightarrow51x.50=7600-2500\)
\(\rightarrow51x.50=5100\)
\(\rightarrow50x=100\)
\(\rightarrow x=\frac{100}{50}=2\)
Vậy x = 2