Điều kiện xác định : \(x\ne-1\)
Phương trình đã cho tương đương với :
\(6^x.4^{x^2}=4.6^{\frac{2x}{x+1}}\Leftrightarrow4^{x^2-1}=6^{\frac{x-x^2}{x+1}}\Leftrightarrow x^2-1=\frac{x-x^2}{x+1}\log_46\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x+1\right)^2+x\log_46\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{-2-\log_46\pm\sqrt{\log^2_46+4\log_46}}{2}\end{array}\right.\) (thỏa mãn điều kiện)
2x*3x*\(4^{x^2}\)=\(\frac{4.36x}{x+1}\)
\(2^x.3^x.4^{x^2}=\frac{144x}{x+1}\)
\(2^x.3^x.4^{x^2}-\frac{144x}{x+1}=0\)
\(\frac{\left(x+1\right)2^x.3^x.4^{x^2}-144x}{x+1}=0\)
\(\left(x+1\right)2^x.3^x.4^{x^2}-144x=0\)
\(x=\frac{71}{10000}\)