Rút gọn
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}+1\right)}\)
rút gọn
A=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
lm nhanh giúp mk nhé
1. Giải phương trình: \(\sqrt{\left(4+x\right)\left(6-x\right)}=x^2-2x-12\)
2. Giải phương trình: \(3\left(x^2-6\right)=8\left(\sqrt{x^3-1}-3\right)\)
Cho x; y; z là các số dương nhỏ hơn 1 thỏa mãn x + y + z + 2\(\sqrt{xyz}\)= 1. Chứng minh rằng \(\sqrt{x\left(1-y\right)\left(1-z\right)}+\sqrt{y\left(1-x\right)\left(1-z\right)}+\sqrt{z\left(1-x\right)\left(1-y\right)}=1+\sqrt{xyz}\)
Cho phương trình :
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\right)+\left(\dfrac{2\sqrt{x}}{\sqrt{x}+2}\right)+\left(\dfrac{2+5\sqrt{x}}{4-x}\right)\)
a, Tìm \(ĐKXĐ\) của pt
b, Rút gọn pt
c, Tìm x để P = 2
Tính
\(\dfrac{1}{x-y}\cdot\sqrt{x^4\left(x-y\right)^2}\) (x>y)
\(\sqrt{27}\cdot\sqrt{48\cdot\left(2-a\right)^2}\) (a>2)
\(\left(\sqrt{2012}+\sqrt{2011}\right)\cdot\left(\sqrt{2012}+\sqrt{2011}\right)\)
\(\sqrt{\dfrac{64x^2}{49\left(y+1\right)^2}}\) (x<0;y>-1)
\(\sqrt{\dfrac{121x^2}{144\left(y+2\right)}}\left(x>0;y< -2\right)\)
\(\sqrt{\dfrac{676x^3}{169xy^2}}\left(x>0;y< 1\right)\)
P=\(\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\)
a) Rút gọn
b) Tính C với x=2-\(\sqrt{3}\); y=2+\(\sqrt{3}\)
Bải 1 :Rút gọn :
\(M=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\)\(\left(\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
Bài 2 : Rút gọn :
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\)\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)