\(2\left|x^2+2x-5\right|=x-1\) (1)
\(\Leftrightarrow\) \(\begin{cases}x-1\ge0\\\begin{cases}2\left(x^2+2x-5\right)=x-1\\2\left(x^2+2x-5\right)=1-x\end{cases}\\\end{cases}\) \(\Leftrightarrow\)\(\begin{cases}x\ge1\\\begin{cases}2x^2+3x-9=0\\2x^2+5x-11=0\end{cases}\\\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x\ge1\\x\in\left\{-3;\frac{3}{2};\frac{-5-\sqrt{113}}{4};\frac{-5+\sqrt{113}}{4}\right\}\end{cases}\) \(\Leftrightarrow\) \(x\in\left\{\frac{3}{2};\frac{\sqrt{113}-5}{4}\right\}\)
Vạy T(1) = \(\left\{\frac{3}{2};\frac{\sqrt{113}-5}{4}\right\}\) là tập nghiệm của phương trình đã cho