\(1+\dfrac{2}{x-2}=\dfrac{-10}{x+3}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\left(ĐK:x\ne2;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{\left(2-x\right)\left(x+3\right)}{\left(2-x\right)\left(x+3\right)}-\dfrac{2}{2-x}=\dfrac{-10\left(2-x\right)}{\left(2-x\right)\left(x+3\right)}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(\Leftrightarrow2x+6-x^2-3x-2=-20+10x+50\)
\(\Leftrightarrow-x^2+2x-3x-10x+6-2+20-50=0\)
\(\Leftrightarrow-x^2-11x-26=0\)
\(\Leftrightarrow-\left(x^2+2x-13x+26\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-13\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-2\end{matrix}\right.\)