Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh nè

Giải hpt sau

\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\)

Nguyễn Anh Nhật
4 tháng 1 2019 lúc 21:28

\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\left(I\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2x^2y+xy+y^2+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2+2x^2+x+2y-4x^2-x-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2-2x^2-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\x\left(2x^2+y\right)+y\left(2x^2+y\right)-\left(2x^2+y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\left(1\right)\\\left[{}\begin{matrix}2x^2=-y\\y=1-x\end{matrix}\right.\end{matrix}\right.\)

Xét TH1:\(2x^2=-y\) (vô lý) =.> Loại

Xét TH2: y=1-x

Thay \(y=1-x\) vào (1) ta được :

(1)\(\Leftrightarrow4x^2+x+3\left(1-x\right)=7\)

\(\Leftrightarrow4x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{17}}{4}\\x_2=\dfrac{1-\sqrt{17}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x1=\dfrac{1+\sqrt{17}}{4}\\y1=\dfrac{3-\sqrt{17}}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x2=\dfrac{1-\sqrt{17}}{4}\\y2=\dfrac{3+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\)

KL: phương trình (I) có 2 nghiệm là (x;y)=........


Các câu hỏi tương tự
Wang Soo Yi
Xem chi tiết
Jang Nara
Xem chi tiết
dodo
Xem chi tiết
Trx Bình
Xem chi tiết
poppy Trang
Xem chi tiết
poppy Trang
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
bach nhac lam
Xem chi tiết
chuthianhthu
Xem chi tiết