Đặt \(x+1=a;y^2=b\left(b\ge0;a\ne0\right)\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{5a}+\dfrac{3b}{5}=1\\\dfrac{3}{a}+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3a}+b=\dfrac{5}{3}\\\dfrac{3}{a}+b=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{3a}=-\dfrac{14}{3}\\\dfrac{3}{a}+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\y=\pm\sqrt{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-\dfrac{3}{2};\sqrt{3}\right);\left(-\dfrac{3}{2};-\sqrt{3}\right)\)