giúp mik giải bài hệ pt vs ạ!
1,\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x^3+xy^2+x=y^3+4x^2y+2y\\\sqrt{4x^2+x+6}-5\sqrt{1+2y}=1-4y\end{matrix}\right.\)
3,\(\left\{{}\begin{matrix}2x^2+\sqrt{2}x=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}\sqrt{9y^2+\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
Giúp mình với, thanks các bạn nhiều: ^^ BT/ Giải hệ pt:
1/\(\left\{{}\begin{matrix}x^3+y^3=1\\x^2y+2xy^2+y^3=2\end{matrix}\right.\) 2/\(\left\{{}\begin{matrix}y^2=\left(x+8\right).\left(x^2+2\right)\\y^2-4\left(x+2\right)y+16+16x-5x^2=0\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}x^2-3x\left(y-1\right)+y^2+y\left(x-3\right)=4\\x-xy-2y=1\end{matrix}\right.\) 3/\(\left\{{}\begin{matrix}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-xy^2=0\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^2\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=-x^2\left(x^4+1-2x^2-2xy^2\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\sqrt{x-1}+\sqrt{x}\left(3\sqrt{x}-y\right)+x\sqrt{x}=3y+\sqrt{y-1}\\3xy^2+4=4x^2+2y+x\end{matrix}\right.\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\sqrt{x+y^2+y+3}-3\sqrt{y}=\sqrt{x+2}\\y^3+y^2-3y-5=3x-3\sqrt[3]{x}+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x-2\right)\left(2y-1\right)=x^3+20y-28\\2\left(\sqrt{x+2y}+y\right)=x^2+x\end{matrix}\right.\)
Giải hệ pt:
1. \(\left\{{}\begin{matrix}2\text{x}^3+2\text{x}^2y-xy=y^2-x-y\\2\text{x}^3-xy+x^2=4\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
Giải hệ pt : \(\left\{{}\begin{matrix}\sqrt{x^2-\left(x+y\right)}=\frac{y}{\sqrt[3]{x-y}}\\2\left(x^2+y^2\right)-3\sqrt{2x-1}=11\end{matrix}\right.\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
giải hệ pt:
\(\left\{{}\begin{matrix}\sqrt{2x+y-1}-\sqrt{x+2y-2}+x-y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)