Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^2\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}+x^2\left(x^4-2x^2-2xy^2+1\right)=0\end{matrix}\right.\)
giải các hệ phương trình sau
a.{ x + 3y = -2
{ 5x - 4y = 11
b.{ 3xy = 5
{ 5x + 2y = 23
c.{ 3x +5y = 1
{ 2x - y = -8
d.{ x - 2y + 6 = 0
{ 5x - 3y - 5 = 0
e.{ 2(x + y) + 3(x - y) = 4
{ (x + y) + 2(x - y) = 5
giải hệ phương trình sau
\(\dfrac{\sqrt{2x-1}}{\sqrt{y+2}}+\dfrac{\sqrt{y+2}}{\sqrt{2x-1}}=2\)
\(x+y=12\)
Giải các hệ phương trình sau:
a.{ x + 4y = -11
{ 5x - 4y = 1
b.{ 2x - y = 7
{ 3x + 5y + 22 = 0
c.{ 2(x - 2) + 3(1 + y) = 2
{ 3(x - 2) - 2(1 + y) = -3
d.{ (x - 5)(y - 2) = (x + 2)(y - 1)
{ (x - 4)(y + 7) = (x - 3)(y + 4)
e.{ 1/x - 1/y = 1
{ 3/x + 4/y = 5
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x}+\dfrac{3}{\sqrt{x}}=\sqrt{y}+\dfrac{3}{\sqrt{y}}\\2x-\sqrt{xy}-1=0\end{matrix}\right.\)
Giúp mình các bài sau với:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}\text{3x+(m^2+1)y=5m−10}\\−9x+(−3m^2−3)y=−15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)