Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vvvvvvvv

giải hệ phương trình \(\left\{{}\begin{matrix}y=x^2\\\frac{1}{x}=\frac{1}{y}+\frac{1}{z}\\z=xy\end{matrix}\right.\)

Phạm Lan Hương
26 tháng 12 2019 lúc 13:01

\(\left\{{}\begin{matrix}y=x^2\\\frac{1}{x}=\frac{1}{y}+\frac{1}{z}\\z=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\\frac{1}{x}=\frac{1}{y}+\frac{1}{xy}\\z=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\\frac{1}{x}=\frac{x}{xy}+\frac{1}{xy}=\frac{x+1}{xy}\\z=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\xy=x^2+x\\z=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^3-x^2-x=0\\z=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x\left(x^2-x-1\right)=0\\z=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\left(loại\right)\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{matrix}\right.\\y=x^2\\z=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\frac{\sqrt{5}+1}{2}\left(TM\right)\\x=\frac{1-\sqrt{5}}{2}\left(TM\right)\end{matrix}\right.\\y=x^2\\z=xy\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\left(\right)TM\\y=\frac{3+\sqrt{5}}{2}\left(TM\right)\\z=2+\sqrt{5}\left(TM\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=\frac{1-\sqrt{5}}{2}\\y=\frac{3-\sqrt{5}}{2}\left(TM\right)\\z=2-\sqrt{5}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

vậy ...

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoàng Quốc Tuấn
Xem chi tiết
Trần Minh Hiển
Xem chi tiết
vvvvvvvv
Xem chi tiết
Agami Raito
Xem chi tiết
fghj
Xem chi tiết
Agami Raito
Xem chi tiết
Trần Minh Hiển
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Đăng Vu Vài
Xem chi tiết