giải hệ pt : \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
GHPT
\(\left\{{}\begin{matrix}x^3-3z^2+6z-8=0\\y^3-3x^2+6x-8=0\\z^3-3y^3+6y-8=0\end{matrix}\right.\)
giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2y^2-6y^2+8=0\\x^3y^3-6xy^3-10y^2+8=0\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}3x-2y+z=14\\2x+y-z=3\\z-2x=-5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-y^2=4y+2x+3\\x^2+2x+y=0\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left|xy-4\right|=8-y^2\\xy=2+x^2\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\2x^2+y^2-3xy+3x-2y+1=0\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x+y+z=0\\8^x+8^y+8^z=2^x+2^y+2^z\end{matrix}\right.\)
giải HPT
\(\left\{{}\begin{matrix}x^3-5z^2+10z-8=0\\y^3-5x^2+10x-8=0\\z^3-5y^2+10y-8=0\end{matrix}\right.\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)