BẤT ĐẲNG THỨC SCHUR VÀ PHƯƠNG PHÁP ĐỔI BIẾN P,Q,R - Tài liệu, chuyên đề, phương pháp về Bất đẳng thức - Diễn đàn Toán học x+y+z=p; xy+yz+xz=q; xyz=r
BẤT ĐẲNG THỨC SCHUR VÀ PHƯƠNG PHÁP ĐỔI BIẾN P,Q,R - Tài liệu, chuyên đề, phương pháp về Bất đẳng thức - Diễn đàn Toán học x+y+z=p; xy+yz+xz=q; xyz=r
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+xy+xz=2\\y^2+yz+xy=3\\z^2+xz+yz=4\end{matrix}\right.\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\dfrac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{matrix}\right.\)
Cho 3 số dương x;y;z thỏa mãn x+y+z=6. CMR: \(x^2+y^2+z^2-xy-yz-xz+xyz\ge8\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x\left(x+y+z\right)+yz=238\\y\left(x+y+z\right)+xz=187\\z\left(x+y+z\right)+xy=154\end{matrix}\right.\)
giải hệ phương trình \(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x\left(yz+1\right)=\frac{7}{3}z\\y\left(xz+1\right)=8x\\z\left(xy+1\right)=\frac{9}{2}y\end{matrix}\right.\)
giải hpt:
\(\left\{{}\begin{matrix}x+y+z=3\\xy+yz+xz=-1\\x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=19\\x^2+z^2+xz=13\\y^2+z^2+yz=7\end{matrix}\right.\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x^2+y^2+z^2=29\\xyz=-24\\xy-2x-3y=-6\\y>2\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)