MODE => 5 => 2 nhập zô
MODE => 5 => 2 nhập zô
giải phương trình
a)\(\left\{{}\begin{matrix}3x+2y=1\\3x+6y+2z=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x-3y=1\\3x-2y-3z=5\end{matrix}\right.\)
giải hệ sau \(\left\{{}\begin{matrix}x=3y^3+2y^2+y\\y=3z^3+2z^2+z\\z=3x^3+2x^2+x\end{matrix}\right.\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}3x+2y=8\\4x-3y=-12\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}2x+5=-\left(x-y\right)\\6x+2y=-10\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\\2x^3+2z^2+3z+3=0\end{matrix}\right.\)
giải hệ phương trình sau
\(\left\{{}\begin{matrix}2x-3y=4\\x+2y=-5\end{matrix}\right.\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
Giải các hệ phương trình sau:
\(a,\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}\frac{3x-2y}{5}+\frac{5x-3y}{3}=x+1\\\frac{2x-3y}{3}+\frac{4x-3y}{2}=y+1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\frac{1}{x-3}-\frac{1}{y-1}=0\\3x-2y=7\end{matrix}\right.\)
giải hệ pt sau
a\(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) b\(\left\{{}\begin{matrix}3x_{ }-2y=11\\4x-5y=3\end{matrix}\right.\) c\(\left\{{}\begin{matrix}4x+3y=13\\5x-3y=_{ }-31\end{matrix}\right.\) D\(\left\{{}\begin{matrix}7X+5Y=19\\3x+5y=31\end{matrix}\right.\)
e\(\left\{{}\begin{matrix}7x-5y=3\\3x+10y=62\end{matrix}\right.\) f\(\left\{{}\begin{matrix}2x+5y=11\\3x+2y=11\end{matrix}\right.\) g\(\left\{{}\begin{matrix}x+3y=4y-x+5\\2x-y=3x-2\left(y+1\right)\end{matrix}\right.\)