giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y+z}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z+x}=\dfrac{1}{3}\\\dfrac{1}{z}+\dfrac{1}{x+y}=\dfrac{1}{4}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{y}{x}=\dfrac{5}{6}\\x^2-y^2=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-7}}+\dfrac{3}{\sqrt{y+6}}=\dfrac{13}{6}\\\dfrac{7}{\sqrt{x-7}}-\dfrac{2}{\sqrt{y+6}}=\dfrac{5}{3}\end{matrix}\right.\)
giả các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\dfrac{-3}{x-y+1}+\dfrac{1}{x +y-2}=12\\\dfrac{2}{x-y+1}-\dfrac{3}{x+y-2}=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\3x^2-\left(y^2+2y\right)=9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x-1}}-\dfrac{5}{\sqrt{y+2}}=\dfrac{9}{2}\\\dfrac{3}{\sqrt{x-1}}+\dfrac{2}{\sqrt{y+2}}=4\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=85\\\dfrac{1}{y}=\dfrac{3}{x}\end{matrix}\right.\)
giải hệ phương trình sau:
\(\left\{{}\begin{matrix}y\left(x+3\right)=1\\y+\dfrac{2}{y}=x+1\end{matrix}\right.\)
giải hệ phương trình nghiệm nguyên sau:\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(y+\dfrac{1}{y}\right)\\y=\dfrac{1}{2}\left(z+\dfrac{1}{z}\right)\\z=\dfrac{1}{2}\left(x+\dfrac{1}{x}\right)\end{matrix}\right.\)
giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)
giải hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\x+y=9\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{6}{3x-2}-2\sqrt{1-y}=1\\\dfrac{2}{3x-2}+\sqrt{1-y}=2\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)