Điều kiện : \(y^2-2\ge0;xy^2-2x-2\ge0\)
\(x^2+\left(y^2-y-1\right)\sqrt{x^2+2}-y^3+y+2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}-y\right)\left(y^2+\sqrt{x^2+2}-1\right)=0\)
\(y=\sqrt{x^2+2}\Leftrightarrow\begin{cases}y\ge0\\y^2=x^2+2\end{cases}\) (Do \(y^2+\sqrt{x^2+2}-1>0\) với mọi x, y)
Thay \(y^2=x^2+2\) vào phương trình thứ 2 của hệ ta được phương trình như sau với điều kiện \(x\ge\sqrt[3]{2}\)
\(\sqrt[3]{x^2-1}-\sqrt{x^3-2}+x=0\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+x-3=\sqrt{x^3-2}-5\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1\right]=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\sqrt{x^3-2}+5}\)
\(\begin{cases}x=3\\\left[\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1\right]=\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\sqrt{x^3-2}+5}\end{cases}\) (*)
Ta thấy :
#) \(\frac{x^2+3x+9}{\sqrt{x^3-2}+5}>2\Leftrightarrow x^2+3x-1>2\sqrt{x^3-2}\)
\(\Leftrightarrow\left(x^2+3x-1\right)^2>4\left(x^3-2\right)\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x-3\right)^2+5x^2>0\) với mọi x
#) \(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1<2\Leftrightarrow\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+1>x\) (**)
Đặt \(t=\sqrt[3]{x^2-1},t>0\), khi đó (**) trở thành :
\(t^2+2t+1>\sqrt{t^3+1}\Leftrightarrow\left(t^2+2t+1\right)^2>t^3+1\Leftrightarrow t^4+3t^3+6t^2+4t>0\)
Đúng với mọi t>0
Suy ra (*) vô nghiệm
Vậy hệ có 1 nghiệm duy nhất \(\left(x,y\right)=\left(3;\sqrt{11}\right)\)