Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Bích Thạch

Giải hệ phương trình :

                     \(\begin{cases}\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\left(1\right)\\\sqrt{y+1}+\sqrt{x^2+2y^2}=2y-x\left(2\right)\end{cases}\)  \(\left(x,y\in R\right)\)

Đoàn Thị Hồng Vân
11 tháng 4 2016 lúc 21:18

Điều kiện : \(y\ge-1\)

Xét (1) : \(\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\)

Đặt \(\sqrt{x^2+2y^2}=t\left(t\ge0\right)\)

Phương trình (1) trở thành :

\(t^2+\left(1-y\right)t-x^2-2y^2-x-2y-3xy=0\)

\(\Delta=\left(1-y\right)^2+4\left(x^2+2y^2+x+2y+3xy\right)=\left(2x+3y+1\right)^2\)

\(\Rightarrow\begin{cases}t=-x-y-1\\t=x+2y\end{cases}\) \(\Leftrightarrow\begin{cases}\sqrt{x^2+2y^2}=-x-y-1\\\sqrt{x^2+2y^2}=x+2y\end{cases}\)

Với \(\sqrt{x^2+2y^2}=-x-y-1\) thay vào (2) ta có :

\(\sqrt{y+1}=3y+1\Leftrightarrow\begin{cases}y\ge-\frac{1}{3}\\9y^2+5y=0\end{cases}\)\(\Leftrightarrow y=0\)

\(\Rightarrow\sqrt{x^2}=-x-1\) (vô nghiệm)

Với \(\sqrt{x^2+2y^2}=x+2y\), ta có hệ \(\begin{cases}\sqrt{y+1}=-2x\\\sqrt{x^2+2y^2}=x+2y\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{-1-\sqrt{5}}{4}\\y=\frac{1+\sqrt{5}}{2}\end{cases}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\frac{-1-\sqrt{5}}{4};\frac{1+\sqrt{5}}{2}\right)\)

Nguyen Van Anh
8 tháng 10 2017 lúc 21:43

F


Các câu hỏi tương tự
Nguyễn Thành Trung
Xem chi tiết
Phương Anh
Xem chi tiết
Phương Anh
Xem chi tiết
poppy Trang
Xem chi tiết
poppy Trang
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Nguyễn Thị Ngọc Uyên
Xem chi tiết
Phương Anh
Xem chi tiết
bơ đi mà sống
Xem chi tiết