\(C=\left(\dfrac{\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{\sqrt{x}}{x+\sqrt{x}}\right):\left(1-\dfrac{1}{\sqrt{x}}\right)\)
\(C=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\dfrac{1}{\sqrt{x}}\right)\)
\(C=\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(C=\dfrac{x-1-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(C=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(C=\dfrac{1}{x-1}\)