Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Việt Lâm
11 tháng 11 2022 lúc 18:54

\(y'=3x^2+6mx+3\left(m^2-1\right)=0\)

\(\Rightarrow\left(x+m\right)^2=1\Rightarrow\left[{}\begin{matrix}x=-m+1\Rightarrow y=3m-2\\x=-m-1\Rightarrow y=3m+2\end{matrix}\right.\) 

(Lưu ý là \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3=\left(x+m\right)^3-3x\) sử dụng cái này để thay x tính y cho lẹ, rút gọn được biểu thức ngay mà ko cần phải xài hằng đẳng thức bậc 3 dài dòng)

Hàm có 2 cực trị nằm về 2 phía trục hoành khi:

\(\left(3m-2\right)\left(3m+2\right)< 0\)

\(\Rightarrow-\dfrac{2}{3}< m< \dfrac{2}{3}\)

\(\Rightarrow a+2b=-\dfrac{2}{3}+2.\dfrac{2}{3}=\dfrac{2}{3}\)


Các câu hỏi tương tự