Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trinh Tuyết Na

giải các phương trình sau:

a, 2x4+3x3+5x2+3x+2=0

b,x4-8x3-3x2+32x+4=0

c,2x2+x+2-5\(\sqrt{\left(x^2-4\right)\left(x+1\right)}\) =0

ai biết thì giúp với ạ!!

Nguyễn Việt Lâm
19 tháng 6 2019 lúc 20:11

a/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow2x^2+3x+5+\frac{3}{x}+\frac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+5=0\)

Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (\(\left|a\right|\ge2\))

\(\Leftrightarrow2\left(a^2-2\right)+3a+5=0\)

\(\Leftrightarrow2a^2+3a+1=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

Phương trình vô nghiệm

b/ Số hạng cuối là 4 hay 16 bạn? 4 thì mình ko giải được, phân tách casio cũng ko được

c/ ĐKXĐ:\(\left[{}\begin{matrix}-2\le x\le-1\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow2x^2+x+2-5\sqrt{\left(x-2\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)-5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+3b^2-5ab=0\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)


Các câu hỏi tương tự
Ngô Thành Chung
Xem chi tiết
Nguyễn Bình Nguyên
Xem chi tiết
Truong Vu
Xem chi tiết
Hoàng
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Phương lan
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Julian Edward
Xem chi tiết