a) 5x + 15 = 0
<=> 5x = -15
<=> x = -3
\(S=\left\{-3\right\}\)
b) (2x + 3)(x - 5) = 0
TH1 : 2x + 3 = 0
<=> 2x = -3
<=> x = \(\dfrac{-3}{2}\)
TH2 : x - 5 = 0
<=> x = 5
\(S=\left\{\dfrac{-3}{2};5\right\}\)
c) \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\) đkxđ : \(x\ne0;x\ne\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x}{x\left(2x-3\right)}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
\(\Rightarrow x-3=5\left(2x-3\right)\)
<=> x - 3 = 10x - 15
<=> x - 10x = -15 + 3
<=> -9x = -12
<=> x = \(\dfrac{4}{3}\)
\(S=\left\{\dfrac{4}{3}\right\}\)