a. \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left[3\left(2x-1\right)-5\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)
b. \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow-\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)
c. \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d. \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(5x^2-20x\right)-\left(12x-48\right)=0\)
\(\Leftrightarrow2x^2\left(x-4\right)+5x\left(x-4\right)-12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x^2+5x-12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\frac{3}{2}\end{matrix}\right.\)
e. \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)