a, (\(x_1,x_2,x_3\))\(\approx\)(-2,52;3,2;-1,35)
b, (x,y,z)\(\approx\)(-0,29;-0,22;1,71)
a, (\(x_1,x_2,x_3\))\(\approx\)(-2,52;3,2;-1,35)
b, (x,y,z)\(\approx\)(-0,29;-0,22;1,71)
Giải các hệ phương trình sau đây bằng máy tính bỏ túi
a) \(\left\{{}\begin{matrix}\dfrac{3}{4}x-\dfrac{7}{3}y=\dfrac{4}{5}\\\dfrac{2}{5}x+\dfrac{2}{7}y=\dfrac{2}{9}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3,7x+4,3y=-2,5\\-5,1x+2,7y=4,8\end{matrix}\right.\)
Giải các hệ phương trình sau bằng máy tính bỏ túi (làm tròn kết quả dến chữ số thập phân thứ hai)
a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}-2x+3y=5\\5x+2y=4\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}2x-3y+4z=-5\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}-x+2y-3z=2\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}7x+14y=17\\2x+4y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{2}{5}x+\dfrac{3}{7}y=\dfrac{1}{3}\\\dfrac{5}{3}x-\dfrac{5}{7}y=\dfrac{2}{3}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}-0,2x+0,5y=1,7\\0,3x+0,4y=0,9\end{matrix}\right.\)
Giải các hệ phương trình :
a. \(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\)
Tìm giá trị của m để các hệ phương trình sau vô nghiệm ?
a) \(\left\{{}\begin{matrix}3x+2y=9\\mx-2y=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x-my=5\\x+y=7\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}x-2y+z=\\2x-y+3z=18\\-3x+3y+2z=-9\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+z=7\\3x-2y+2z=5\\4x-y+3z=10\end{matrix}\right.\)
Giải các hệ phương trình :
a. \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)
hệ phương trình
1, \(\left\{{}\begin{matrix}3x=6\\x-3y=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}3x+5y=15\\2y=-7\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)+11\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{4}{5}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{5}\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)