Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau :
a. \(-x+2+2\left(y-2\right)< 2\left(1-x\right)\)
b. \(3\left(x-1\right)+4\left(y-2\right)< 5x-3\)
Biểu diễn hình học tập nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau :
a. \(\left\{{}\begin{matrix}x-2y< 0\\x+3y>-2\\y-x< 3\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}-1< 0\\x+\dfrac{1}{2}-\dfrac{3y}{2}\le2\\x\ge0\end{matrix}\right.\)
Giải bất phương trình A) căn 5x-1< x+1 B) căn x^2 +2x+8 b< x+2 C) căn 2x^2 +4
Biểu diễn hình học tập nghiệm của các bất phương trình sau :
a) \(3+2y>0\)
b) \(2x-1< 0\)
c) \(x-5y< 2\)
d) \(2x+y>1\)
e) \(-3x+y+2\le0\)
f) \(2x-3y+5\ge0\)
1, số nghiệm nguyên của bất phương trình \(\left|\dfrac{2-3\left|x\right|}{1+x}\right|\le2\) là
a. 2 b.5 c.3 d.4
2, với giá trị nào của m thì 2 đường thẳng sau đây song song?
Δ1: \(\left\{{}\begin{matrix}x=8+\left(m+1\right)t\\y=10-t\end{matrix}\right.\) và Δ2 \(mx-6y-76=0\)
a. m=2 b. không có m thỏa mãn c. m=-3 d. m=2 hoặc m=-3
3, xác định vị trí tương đối của 2 đường thẳng
Δ1: \(\left\{{}\begin{matrix}x=2+5t\\y=3-6t\end{matrix}\right.\) và Δ2: \(\left\{{}\begin{matrix}x=-2+5t'\\y=-3+6t'\end{matrix}\right.\)
a. trùng nhau b. song song nhau c. vuông góc nhau d. cắt nhau nhưng không vuông góc
4, cho ΔABC có độ dài 3 cạnh là a,b,c. R là bán kính đường tròn ngoại tiếp tam giác. khẳng định nào sau đây đúng?
a, \(cosB=\dfrac{b^2+c^2-a^2}{2bc}\) b, \(\dfrac{a}{sinA}=R\) c, SΔABC \(=\dfrac{1}{2}abc\) d, \(m_c^2=\dfrac{2b^2+2a^2-c^2}{4}\)
5, Cho bpt 4x-3y-5≤0(1). chọn khẳng định đúng
a, bpt 1 có vô số nghiệm
b, ------- chỉ có 1 nghiệm duy nhất
c, ------- vô nghiệm
d, ------- có duy nhất 2 nghiệm
6, trong 1 cuộc thi pha chế, mỗi đội chơi đc sd tối đa 30g hương liệu, 12l nc và 180 gam đường để pha chế nước cam và táo
+) để pha chế 1l nước cam cần 20 gam đường, 1l nước và 1g hương liệu
+) -------------------------- táo ------- 10gam -------------------------- 4g ---------------
mỗi lít nước cam được 20 điểm thưởng, mỗi lít nước táo nhận được 50 điểm thưởng. hỏi cần chế bao nhiêu lít nước trái cây mỗi loại đạt được số điểm thưởng cao nhất?
A. 5l nước cam và 5l nước táo
B. 7l ------------------- 3l-------------
C 3l-------------------- 7l------------
D 6l ------------------- 6l------------
giải các bất phương trình sau:
a, \(\left|\dfrac{3x+4}{x-2}\right|\le3\)
b, \(\left|\dfrac{2x-3}{x-3}\right|\ge1\)
c, \(4x^2+4x-\left|2x+1\right|\ge5\)
d, \(\left|x^2-5x+4\right|\le x^2+6x+5\)
e, \(x+5>\left|x^2+4x-12\right|\)
Giải các bất phương trình sau:
1. (3x-1)(2-\(\sqrt{5}\)x)\(\le\)0
2. \(\frac{9-4x^2}{2x-3}\)\(\ge\)0
3. \(\left|x-2\right|\ge3\)
4. \(\left|3x+1\right|\le10\)
5. \(\frac{3x^2-x+2}{x^2-9}\le3\)
6. \(\frac{1}{2-x}< \frac{4}{\left(x-2\right)^2}\)
M.n giải giúp mik nha^_^
1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10
A.4 B.5 C.9 D.10
2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)
A. 5 B.6 C.21 D.40
3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x
A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ
4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]
5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng
A. 15 B. 26 C. 11 D. 0
6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi
A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R
7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm
A. 0 B.1 C.2 D. vô số
8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là
A. 0 B.1 C.2 D.3
9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]
A. m< \(\frac{7}{2}\) B. m= \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R
10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]
A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2
giải các bất phương trình sau :
1, \(\sqrt{2x+3}+\sqrt{x+2}\le1\)
2, \(\sqrt{5x^2+10x+1}>7-2x-x^2\)
3,\(6\sqrt{\left(x-3\right)\left(x-2\right)}\le x^2-34x+48\)
4,\(\dfrac{2x-4}{\sqrt{x^2-3x-10}}>1\)
5, \(\left(x-2\right)\sqrt{x^2+4}\le x^2-4\)
6, \(\sqrt{x^2+x-2}+\sqrt{x^2+2x-3}\le\sqrt{x^2+4x-5}\)