Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Trâm

giải BPT : a) \(\sqrt{11+x}+\sqrt{1-x}< 2-\frac{x^2}{4}\)

b) \(x+\frac{2x}{\sqrt{x^2-4}}>3\sqrt{5}\)

c) \(\left(x+2\right)\sqrt{4-x^2}=< -2x-8\)

Nguyễn Việt Lâm
14 tháng 3 2020 lúc 17:22

a/ ĐKXĐ: ....

\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)

\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)

\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm

b/

ĐKXĐ: ...

- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm

- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:

\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)

\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)

Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)

\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)

\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)

\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
14 tháng 3 2020 lúc 17:25

c/

ĐKXĐ: \(-2\le x\le2\)

Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)

\(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)

\(\Rightarrow VP< VT\)

Vậy BPT đã cho vô nghiệm

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tran Lam Phong
Xem chi tiết
Nguyễn Thị Hà Linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Lê Hồng Nhung
Xem chi tiết
Nhung Truong
Xem chi tiết
Ichigo Hollow
Xem chi tiết
Mẫn Li
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Chiều Xuân
Xem chi tiết