\(\sqrt{x^2-2x}\ge x+2\) (1)
\(\Leftrightarrow\) \(\begin{cases}x-2<0\\x^2-2x\ge0\end{cases}\) hoặc \(\begin{cases}x+2\ge0\\x^2-2x\ge\left(x+2\right)^2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x<-2\\x\le0\end{cases}\) hoặc \(\begin{cases}x<-2\\2\le x\end{cases}\)
hoặc \(\begin{cases}-2\le x\\x\le-\frac{2}{3}\end{cases}\)
\(\Leftrightarrow\) \(x<-2\) hoặc \(2\le x\le-\frac{2}{3}\)
\(\Leftrightarrow\) \(x\le-\frac{2}{3}\)
Vậy bất phương trình đã cho có tập nghiệm T(1) = (\(-\infty\); \(-\frac{2}{3}\))