\(\frac{x+3}{2015}+\frac{x+2}{2016}+\frac{x+1}{2017}\le-3\)
\(\Leftrightarrow\frac{x+3}{2015}+1+\frac{x+2}{2016}+1+\frac{x+1}{2017}+1\le0\)
\(\Leftrightarrow\frac{x+2018}{2015}+\frac{x+2018}{2016}+\frac{x+2018}{2017}\le0\)
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\le0\)
Mà \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}>0\)
⇒ x + 2018 < 0 ⇔ x < - 2018
\(\frac{x+3}{2015}+\frac{x+2}{2016}+\frac{x+1}{2017}\le-3\) \(\Leftrightarrow\frac{x+2018}{2015}+\frac{x+2018}{2016}+\frac{x+2018}{2017}\le0\) \(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\le0\)
\(\Leftrightarrow x+2018;\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2017}\) khác dấu \(\Leftrightarrow x+2018\le0\Leftrightarrow x\le-2018\)
Vậy .............
sai bạn sửa nhé :))