ĐKXĐ: \(9-x^2>0\Rightarrow-3< x< 3\)
\(\frac{\left(x^2-3x\right)\sqrt{9-x^2}}{\sqrt{9-x^2}}\ge0\Leftrightarrow x^2-3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x\ge3\end{matrix}\right.\)
Kết hợp ĐKXĐ ta được nghiệm của BPT: \(-3< x\le0\)
ĐKXĐ: \(9-x^2>0\Rightarrow-3< x< 3\)
\(\frac{\left(x^2-3x\right)\sqrt{9-x^2}}{\sqrt{9-x^2}}\ge0\Leftrightarrow x^2-3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x\ge3\end{matrix}\right.\)
Kết hợp ĐKXĐ ta được nghiệm của BPT: \(-3< x\le0\)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
Tìm tập nghiệm của bất phương trình:\(2\left(x-4\right)\sqrt{2x+1}\ge x\sqrt{x^2+1}+x^3+x^2-3x-8\)
Tìm m để bất phương trình \(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\) nghiệm đúng với mọi \(x\in\left[-2;4\right]\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
số nghiệm nguyên của bất phương trình \(\left(x^2-5x+4\right)\sqrt{x^2-9}\le0\) ?
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
1) Điều kiện của m để bất phương trình \(\left(m^2-m\right)x\ge1-m\) có nghiệm là :
2) Hệ bất phương trình \(\left\{{}\begin{matrix}2x+7< 8x-1\\-2x+m+5\ge0\end{matrix}\right.\) vô nghiệm khi:
3) Hệ bất phương trình \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m-5x\le8\end{matrix}\right.\) vô nghiệm khi:
4) Tập nghiệm của bất phương trình \(\left(x-1\right)\left(x^2-3x+2\right)< 0\) là :
5) Tập nghiệm của bất phương trình \(\left(x+3\right)\left(x^2+4x+3\right)\ge0\) là :
6) Tập nghiệm của bất phương trình \(\frac{x^2-x+1}{x-1}\ge0\) là :
1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)