Cho f(x) = ax + b thỏa mãn \(f\left(f\left(f\left(0\right)\right)\right)=2\) và \(f\left(f\left(f\left(1\right)\right)\right)=29\). Tìm a,b ?
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^n-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) (với n thuộc N)
CMR: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N
CMR: Không có đa thức f(x) nào mà: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+.........+a_1x+a_0\left(a_1,a_2,a_3,............,a_n\in Z\right)\) có thể nhận giá trị f(7)=15 và f(15)=9
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết:
\(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N
Given that \(f\left(x\right)=\dfrac{x^2}{2x-2x^2-1}\)
Caculate:
\(f\left(\dfrac{1}{2016}\right)+f\left(\dfrac{2}{2016}\right)+f\left(\dfrac{3}{2016}\right)+...+f\left(\dfrac{2015}{2016}\right)+f\left(\dfrac{2016}{2016}\right)\)
(Input the answer as a decimal in its simplest form)
Cho hàm số :\(f\left(x\right)=2^x-x-4\) . Giá trị của tổng \(f\left(0\right)+f\left(1\right)+f\left(2\right)+...+f\left(8\right)\)
Cho hàm số : \(f\left(x\right)=2^x-x-4\).
Gtrị của tổng : \(f\left(0\right)+f\left(1\right)+f\left(2\right)+....+f\left(8\right)\)