a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)
\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)
\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)
\(\Rightarrow\text{pt vô nghiệm}\)
b. ĐKXĐ: \(x\le-4;x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)
\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)
pt đã cho tương đương:
\(t=t^2\)
\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)
\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)