\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{302.305}\)
=\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
=\(\frac{1}{5}-\frac{1}{305}\)
=\(\frac{12}{61}\)
tick cho mik nha
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{302.305}\)
=\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
=\(\frac{1}{5}-\frac{1}{305}\)
=\(\frac{12}{61}\)
tick cho mik nha
Chứng tỏ: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}< \frac{1}{2}\)
1. tính
a) A=\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
b) B=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
c) C=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
d) D=\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.98}\)
Tìm x biết: 1/5.8+1/8.11+1/11.14+..............+1/x.(x+3)=101/1540
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
a) \(c=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
b) \(d=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
c) \(e=\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{197.200}\)
Mik đang cần gấp
Tính giá trị của :
D=\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\right)\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
B=\(\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}+\frac{1}{2017}\)
tính (A-B)^2017
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)Làm nhanh và ngắn gọn nhất có thể nhé ! mình tik cho 10 tik