Cho n là số tự nhiên khác 0. Tìm giá trị nhỏ nhất của
Q= \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+....+\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}+\frac{101}{n+1}\)
CMR n\(\in\)N, n>3
a,\(\frac{1}{2\sqrt{1} }+\frac{1}{3\sqrt{2} } +\frac{1}{4\sqrt{3} }+...+\frac{1}{(n+1)\sqrt{n} }<2 \)
b,S=\(\frac{1}{3(1+\sqrt{2}) }+\frac{1}{5(\sqrt{2}+\sqrt{3} }+...+\frac{1}{(2n+1)(\sqrt{n}+\sqrt{n+1}) } \)
Với n là số tự nhiên. Tính: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+5}}+...+\frac{1}{\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+5}+...+\sqrt{1+3+5+...+\left(2n+1\right)}}\)
Chứng minh rằng
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}+1\)
cảm ơn
\(\frac{2}{3}n\sqrt{n+1} +<1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}<\frac{2}{3}(n+1) \sqrt{n}\)
A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x},B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
a,rút gọn A
b,Tìm số nguyên x để gt biểu thức P=A.B là số nguyên
Bài 1 : Cho P = \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P
b. So sánh P và 1
c. Chứng minh P > \(\sqrt{P}\)
d. Tìm Min P
e. Tìm x nguyên để P nguyên
Bài 2 : Cho P = \(\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x\sqrt{x}-x+\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}}{x+1}\right)\)
a. Tính P khi x = 6 - \(2\sqrt{5}\)
b. Chứng minh P > 0
c. Tìm x để P = 1
Bài 3 : Cho P = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. Chứng tỏ P ≤ \(\frac{2}{3}\)
b. Tìm x để P > 0
a) \(\sqrt{2}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{2}{\sqrt{8+2\sqrt{15}}}\)
b) \(\frac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}+\frac{3+2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\frac{1}{\sqrt{12+2\sqrt{35}}}\)
c) \(\left(\frac{15}{3-\sqrt{2}}-\frac{2}{1-\sqrt{3}}+\frac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)
Giúp mình bài này nhé, mình đang cần gấp mọi người ơi :<
Chứng minh rằng: \(\frac{1}{4}< \frac{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}{\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}< \frac{3}{10}\)( ở tử có n dấu căn, ở mẫu có n - 1 dấu căn)