\(\Leftrightarrow\frac{74}{1225}\frac{1}{a^2}=\frac{1}{225}\)
\(\Leftrightarrow a^2=\frac{666}{49}\)
\(\Rightarrow a=\pm\frac{\sqrt{666}}{7}\)
\(\Leftrightarrow\frac{74}{1225}\frac{1}{a^2}=\frac{1}{225}\)
\(\Leftrightarrow a^2=\frac{666}{49}\)
\(\Rightarrow a=\pm\frac{\sqrt{666}}{7}\)
tìm min p=\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}+\frac{101}{n+1}\)
Tính: \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2018^2}+\frac{1}{2019^2}}\)
Tính: \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
Tính:
a) \(A=\frac{1-ax}{1+ax}\sqrt{\frac{1+bx}{1-bx}}\) tại \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\)
b) \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
c) \(C=\frac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt{5}-\sqrt[4]{125}}}\)
tính S=\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...\sqrt{1+\frac{1}{2006^2}+\frac{1}{2007^2}}\)
cho \(A=\frac{n-1}{1}+\frac{n-2}{2}+...+\frac{2}{n-2}+\frac{1}{n-1}\) , \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\) . Tính \(\frac{A}{B}\)
Rút gọn E
E = \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2005^2}+\frac{1}{2006^2}}\)
1. Tính gt của bt:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
2. Tính tổng \(S=\sqrt{1+\left(1+\frac{1}{3}\right)^2}+\sqrt{1+\left(\frac{1}{2}+\frac{1}{4}\right)^2}+\sqrt{1+\left(\frac{1}{3}+\frac{1}{5}\right)^2}+...+\sqrt{1+\left(\frac{1}{2014}+\frac{1}{2016}\right)^2}\)