\(\dfrac{\left(1+2+...+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.3,6\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+...+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}=0\)
Ta xét :
\(\left(6,3.12-21.3,6\right)=75,6-75,6=0\)
Từ đây ta thấy các tích nhân với 0 sẽ bằng 0 mà 0 chia cho số nào cũng vẫn bằng 0
\(\Rightarrow\) phép tính đó bằng 0
Vậy............
\(\dfrac{\left(1+2+.....+100\right).\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.3,6\right)}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{100}}\)\(=\dfrac{\left(1+2+3+.....+100\right).\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=\dfrac{A.0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}=0\)