ta có
\(\dfrac{81}{3^{2n+1}}=3\)
=> \(81=3.3^{2n+1}\)
=>\(81=3^{2n+2}\)
mà có: \(81=3^3\)
=> \(3^3=3^{2n+2}\)
=> 3 = 2n+2
=>-2n= 2-3
=> -2n= -1
=> n = \(\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy \(n=\dfrac{1}{2}\)
ta có
\(\dfrac{81}{3^{2n+1}}=3\)
=> \(81=3.3^{2n+1}\)
=>\(81=3^{2n+2}\)
mà có: \(81=3^3\)
=> \(3^3=3^{2n+2}\)
=> 3 = 2n+2
=>-2n= 2-3
=> -2n= -1
=> n = \(\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy \(n=\dfrac{1}{2}\)
1.Tính:
\(\left(\dfrac{-2}{3}\right)\)\(\times0.75+1\dfrac{2}{3}\div\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)
2.Tìm x:
a)\(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)
3.Tìm n, biết:
a) \(\dfrac{16}{2^n}=2\)
b)\(\dfrac{\left(-3\right)^n}{81}=-27\)
4. Tìm ba số x,y,z biết:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\)và x-y+z= -49
1 tính
a, \(-\dfrac{2}{3}-\left(\dfrac{-2}{5}\right)-\dfrac{7}{10}\)
b, \(\dfrac{-5}{9}.\left(\dfrac{3}{10}-\dfrac{2}{5}\right)\)
c, \(\left(\dfrac{11}{24}:\dfrac{55}{36}\right).\dfrac{10}{3}\)
d, \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2017}-1\right)\)
e,\(\left(\dfrac{2}{3}\right):\left(\dfrac{4}{9}\right)^{10}\)
f,\(\left(\dfrac{1}{7}\right)^7.7^7\)
g, \(\dfrac{\left(125\right)^5}{5^{15}}\)
2 tìm x, biết
a, \(\dfrac{-4}{7}-x=\dfrac{5}{7}\)
b, \(x:\left(\dfrac{-3}{8}\right)=\dfrac{1}{2}\)
c, \(\dfrac{-3}{5}+\dfrac{1}{4}:x=\dfrac{-2}{5}\)
d, \(\left(x-\dfrac{2}{5}\right).\left(x+\dfrac{3}{7}\right)=0\)
e, \(\left(x+1\right)^5=-32\)
f, \(x-\left(1,5-7\right)=0,35\)
3 tìm số tự nhiên n biết
a, \(3^n=81\)
b, \(2^n=16\)
c, \(2.2^n=16\)
d, \(2.8^n=128\)
5 so sánh
a, \(2^{333}\) và \(3^{222}\)
b, \(\left(\dfrac{-1}{16}\right)^{100}\) và \(\left(\dfrac{-1}{2}\right)^{400}\)
tính
a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)
b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)
c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)
e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)
f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)
h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]X\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}\) : \(\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\)
b, tìm x, y, z thoả mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}\) + \(\sqrt{\left(y+\sqrt{2}\right)^2}\) + |x + y + z| = 0
Tìm x
\(\left(\dfrac{2}{3}\right)^x=\dfrac{16}{81}\)
a, \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}.\sqrt{\dfrac{49}{4}}\right)\): \(\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]\): \(\dfrac{1704}{445}\)
b, \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{99.100}\)
c, \(\left(1-\dfrac{1}{2}\right)\)x\(\left(1-\dfrac{1}{3}\right)\)x.....x\(\left(1-\dfrac{1}{n+1}\right)\) (n ϵ N)
d, -66 x \(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)\) + 124 x -37 + 63 x -124
e, \(\dfrac{7}{4}\) x \(\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
a, 1 + \(\dfrac{1}{2}\).(1+2)+\(\dfrac{1}{3}\).(1+2+3)+...+\(\dfrac{1}{16}\).(1+2+3+...+16)
b, \(\left[\left(\dfrac{2}{196}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]\):\(\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
c, \(\dfrac{\dfrac{1}{2}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\)x\(\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)+\(\dfrac{5}{8}\)
d, \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}\)+\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}\)
Rút gọn biểu thức trên
Tính bằng cách hợp lí :
A=\(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{2}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)
B=\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)