\(=\dfrac{5.\left(\sqrt{11}+\sqrt{6}\right)}{5}-\dfrac{2.\left(\sqrt{6}+2\right)}{2}+\dfrac{\sqrt{11}.\left(\sqrt{11}-1\right)}{1-\sqrt{11}}\)
= \(\sqrt{11}+\sqrt{6}-\sqrt{6}-2-\sqrt{11}\)
= -2
\(=\dfrac{5\left(\sqrt{11}+\sqrt{6}\right)}{\left(\sqrt{11}-\sqrt{6}\right)\left(\sqrt{11}+\sqrt{6}\right)}-\dfrac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\left(\sqrt{11}-1\right)}\)
\(=\dfrac{5\left(\sqrt{11}+\sqrt{6}\right)}{5}-\dfrac{2\left(\sqrt{6}+2\right)}{2}+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\left(\sqrt{11}-1\right)}\)
\(=\left(\sqrt{11}+\sqrt{6}\right)-\left(\sqrt{6}+2\right)+\sqrt{11}\)
\(=2\sqrt{11}-2\)