Ta có \(\dfrac{3x-3}{x^2-9}-\dfrac{1}{x-3}=\dfrac{x+1}{x+3}\)
<=> \(\dfrac{3\left(x-1\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow3\left(x-1\right)-\left(x+3\right)=\left(x+1\right)\left(x-3\right)\)
\(\Leftrightarrow3x-3-x-3=x^2-2x-3\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\)(x-3)(x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy....