Bổ sung đề:
Tìm \(x\in Z\) để \(A=\dfrac{2x+1}{x-3}\in Z\).
Lời giải:
Ta có: \(A=\dfrac{2x+1}{x-3}=\dfrac{\left(2x-6\right)+7}{x-3}=\dfrac{2x-6}{x-3}+\dfrac{7}{x-3}=2+\dfrac{7}{x-3}\)
Để \(A\in Z\) thì \(\dfrac{7}{x-3}\in Z\Rightarrow7⋮x-3\Leftrightarrow x-3\in U\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau:
\(x-3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(4\) | \(2\) | \(10\) | \(-4\) |
Vậy với \(x\in\left\{-4;2;4;10\right\}\) thì \(A=\dfrac{2x+1}{x-3}\in Z\)