a, \(\left(2x-3\right)\left(\dfrac{3}{4}x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=3\\\dfrac{3}{4}x=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy......
b, \(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
Vậy......
c, \(\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\)
\(\Rightarrow\dfrac{1}{7}:x=\dfrac{-3}{14}\)
\(\Rightarrow x=\dfrac{1}{7}:\dfrac{-3}{14}=\dfrac{-2}{3}\)
Vậy.....
Chúc bạn học tốt!!!
a,(2x-3)(\(\dfrac{3}{4}\)x+1)=0
*2x-3=0\(\rightarrow\)2x=3\(\rightarrow\)x=\(\dfrac{3}{2}\)
*\(\dfrac{3}{4}\)x+1=0\(\rightarrow\)\(\dfrac{3}{4}\)x=\(-1\)\(\rightarrow\)x=\(\dfrac{-3}{4}\)
Vậy x\(\in\){\(\dfrac{-3}{4};\dfrac{3}{2}\)}
b,(5x-1)(2x-1/3)=0
*5x-1=0\(\rightarrow\)5x=1\(\rightarrow\)x=1/5
*2x-1/3=0\(\rightarrow\)2x=1/3\(\rightarrow\)x=1/6
Vậy x\(\in\){1/5;1/6}
c,3/7+1/7:x=3/14
1/7:x=-3/14
x=-14/21 Vậy x=-14/21
a) \(\left(2x-3\right)\left(\dfrac{3}{4}x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\\dfrac{3}{4}x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(x=-\dfrac{4}{3}\) hoặc \(x=\dfrac{3}{2}\)
b) \(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{1}{6}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) hoặc \(x=\dfrac{1}{5}\)
c) \(\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\)
\(\Leftrightarrow\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\left(đk:x\ne0\right)\)
\(\Leftrightarrow\dfrac{3}{7}+\dfrac{1}{7}\cdot\dfrac{1}{x}=\dfrac{3}{14}\)
\(\Leftrightarrow\dfrac{3}{7}+\dfrac{1}{7x}=\dfrac{3}{14}\)
\(\Leftrightarrow\dfrac{1}{7x}=\dfrac{3}{14}-\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{1}{7x}=-\dfrac{3}{14}\)
\(\Leftrightarrow14=-21x\)
\(\Leftrightarrow-21x=14\)
\(\Leftrightarrow x=-\dfrac{2}{3}\left(đk:x\ne0\right)\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(x=-\dfrac{2}{3}\)
a) Ta có
(2x - 3) \(\left(\dfrac{3}{4}x+1\right)\) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\)
TH1: 2x - 3 = 0
2x = 0 + 3
2x = 3
x = 3:2
x = \(\dfrac{3}{2}\)
TH2: \(\dfrac{3}{4}x+1=0\)
\(\dfrac{3}{4}x\) = 0 - 1
\(\dfrac{3}{4}x\) = -1
x = -1 : \(\dfrac{3}{4}\)
x = \(\dfrac{-4}{3}\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{-4}{3}\end{matrix}\right.\)là giá trị cần tìm
b)(5x - 1) \(\left(2x-\dfrac{1}{3}\right)\) = 0
=> \(\left[{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\)
Th1: 5x - 1 = 0
5x = 0+1
5x = 1
x = 1 : 5
x = \(\dfrac{1}{5}\)
Th2: \(2x-\dfrac{1}{3}\) = 0
2x = 0 + \(\dfrac{1}{3}\)
2x = \(\dfrac{1}{3}\)
x = \(\dfrac{1}{3}:2\)
x = \(\dfrac{1}{6}\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{1}{6}\end{matrix}\right.\) là giá trị cần tìm
c) Ta có
\(\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\)
\(\dfrac{1}{7}+x\) = \(\dfrac{3}{14}:\dfrac{3}{7}\)
\(\dfrac{1}{7}+x\) = \(\dfrac{1}{2}\)
x = \(\dfrac{1}{2}-\dfrac{1}{7}\)
x = \(\dfrac{5}{14}\)
Vậy x = \(\dfrac{5}{14}\) là giá trị cần tìm
lộn
c) \(\dfrac{1}{7}:x=\dfrac{3}{14}-\dfrac{3}{7}\)
\(\dfrac{1}{7}:x=\dfrac{-3}{14}\)
x = \(\dfrac{1}{7}:\dfrac{-3}{14}\)
x = \(\dfrac{-2}{3}\)
Vậy ...
a/\(\left(2x-3\right)\left(\dfrac{3}{4}x+1\right)=0\)
Vì \(\left(2x-3\right)\left(\dfrac{3}{4}x+1\right)=0\Rightarrow\left\{{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3\Rightarrow x=\dfrac{3}{2}\\\dfrac{3}{4}x=-1\Rightarrow x=\dfrac{-4}{3}\end{matrix}\right.\)
b/\(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
Vì:\(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=1\Rightarrow x=\dfrac{1}{5}\\2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\end{matrix}\right.\)
c/\(\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\)
\(\dfrac{1}{7}:x=\dfrac{3}{14}-\dfrac{3}{7}\)
\(\dfrac{1}{7}:x=\dfrac{-3}{14}\)
\(x=\dfrac{1}{7}:\dfrac{-3}{14}\)
\(x=\dfrac{-2}{3}\)
\(\left(2x-3\right)\left(\dfrac{3}{4}x=1\right)=0\)
\(\Leftrightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\dfrac{3}{2}\)
\(\dfrac{3}{4}x+1=0\Rightarrow\dfrac{3}{4}x=-1\Rightarrow x=\dfrac{-4}{3}\)
\(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow5x-1=0\Rightarrow5x=1\Rightarrow x=\dfrac{1}{5}\)
\(2x-\dfrac{1}{3}=0\Rightarrow2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\)
\(\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\)
\(\Leftrightarrow\dfrac{1}{7}:x=\dfrac{3}{14}-\dfrac{3}{7}\)
\(\dfrac{1}{7}:x=\dfrac{-3}{14}\)
\(x=\dfrac{1}{7}:\dfrac{-3}{14}=\dfrac{-2}{3}\)