\(\dfrac{2x-1}{3}=x-1\)
=> \(2x-1=3x-3\)
=> \(2x-1-3x+3=0\)
=> \(-x+2=0\)
=> \(-x=-2\)
=> \(x=2\)
Vậy \(x=2\)
\(\dfrac{2x-1}{3}=x-1\)
\(\Leftrightarrow2x-1=3\left(x-1\right)\)
\(\Leftrightarrow2x-1=3x-3\)
\(\Leftrightarrow2x-1-3x+3=0\)
\(\Leftrightarrow-x+2=0\Leftrightarrow-x=-2\Rightarrow x=2\)
Ta có:\(\dfrac{2x-1}{3}\)=x-1<=>2x-1=3(x-1)
<=>2x-1=3x-3<=>3x-2x=-1+3<=>x=2
Vậy S={2}
\(\dfrac{2x-1}{3}=x-1\)
\(\Leftrightarrow\dfrac{2x-1}{3}=\dfrac{3\left(x-1\right)}{3}\)
\(\Rightarrow2x-1=3x-3\)
\(\Leftrightarrow2x-3x=-3+1\)
\(\Leftrightarrow-x=-2\Rightarrow x=2\)
\(\dfrac{2x-1}{3}=x-1\)
\(\Leftrightarrow2x-1=3x-3\)
\(\Leftrightarrow x=2\)
Vậy.....
<=> \(2x-1=3x-3\)
<=> \(2x-3x=-3+1\)
<=> \(-x=-2\)
<=> \(x=2\)
Vậy \(x=2\)
\(\dfrac{2x-1}{3}=x-1\)
\(\Leftrightarrow2x-1=3\left(x-1\right)\)
\(\Leftrightarrow2x-1=3x-3\)
\(\Leftrightarrow2x=3x-3+1\)
\(\Leftrightarrow2x=3x-2\)
\(\Leftrightarrow x=2\)