Bài 2: Cộng, trừ số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Anh Thư

\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

so sanh

a) \(5^{20}và2550^{10}\)

b)\(999^{10}và999999^5\)

c)\(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)

Lê Vương Kim Anh
24 tháng 7 2017 lúc 15:53

\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)

\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)

\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)

\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)

\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)

\(=\dfrac{7}{2\left(1+6\right)}\)

\(=\dfrac{7}{2.7}\)

\(=\dfrac{1}{2}\)

a) \(5^{20}và2550^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)

=> \(5^{20}< 2550^{10}\)

b) \(999^{10}và999999^5\)

\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)

=> \(999^{10}< 999999^5\)

c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)

\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)

\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)

\(\dfrac{-1}{5}=\dfrac{-3}{15}\)

\(\dfrac{-1}{3}=\dfrac{-5}{15}\)

=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)

=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)


Các câu hỏi tương tự
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Thư Trần
Xem chi tiết
My Trần Trà
Xem chi tiết
Lê Anh Tuấn
Xem chi tiết
꧁༺ɠấυ❤ƙɑ༻꧂
Xem chi tiết
Kinomoto Sakura
Xem chi tiết
Thunder Gaming
Xem chi tiết
Huyền Anh Kute
Xem chi tiết