\(\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{1475}+\dfrac{1}{7}+\dfrac{1}{1147}\)
Tính giá trị biểu thức :
1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)
2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)
4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)
5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)
6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)
9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)
10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)
12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)
13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)
14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)
15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)
16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)
Chứng minh \(\dfrac{1}{5}\)< \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{99^2}\)+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{3}\)
\(a.19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12} b.\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
c.\(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-\left(4\dfrac{1}{5}\right)\right)-\dfrac{11}{31}\)
1.Tính giái trị biểu thức
tính G = \(\dfrac{\left(3\dfrac{2}{15}+\dfrac{1}{5}\right):2\dfrac{1}{2}}{\left(5\dfrac{3}{7}-2\dfrac{1}{4}\right):4\dfrac{43}{56}}-\dfrac{1,2:\left(1\dfrac{1}{5}.1\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Tính nhanh:
P = \(\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}\)
Thực hiện phép tính, tính nhanh nếu có thể
a, \(\dfrac{7}{13}\) + \(\dfrac{12}{13}\) + \(\dfrac{6}{-13}\)
b, ( \(\dfrac{4}{5}\) + \(\dfrac{1}{2}\) ) x ( \(\dfrac{6}{13}\) - 2 )
c, 75% : \(\dfrac{1}{2}\) - \(2\dfrac{1}{2}\) x ( \(-1\dfrac{1}{3}\) )
d, 0,375 x \(1\dfrac{3}{5}\) + 60% x \(\dfrac{2}{7}\) + \(\dfrac{3}{5}\) x \(\dfrac{5}{7}\)
e, \(\dfrac{-5}{6}\) x \(\dfrac{7}{13}\) + \(\dfrac{19}{13}\) : \(\dfrac{6}{-5}\) + \(\dfrac{2}{5}\)
f, 1,25 x \(\dfrac{7}{9}+\dfrac{5}{4}x\dfrac{15}{9}-1\dfrac{1}{4}:\dfrac{19}{3}\)
Tính giá trị biểu thức sau :
\(B=\left(2017-\dfrac{1}{4}-\dfrac{2}{5}-\dfrac{3}{6}-\dfrac{4}{7}-....-\dfrac{2017}{2020}\right):\left(\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+\dfrac{1}{35}+....+\dfrac{1}{10100}\right)\)
Bài 1 : Tìm các số nguyên x , biết :
a) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{13}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
b) \(\left(\dfrac{31}{20}-\dfrac{26}{45}\right).-\dfrac{36}{35}< x< \left(\dfrac{51}{56}+\dfrac{8}{21}+\dfrac{1}{3}\right).\dfrac{8}{13}\)
Bài 2 :
C = \(\dfrac{-1}{3}.\dfrac{141}{17}-\dfrac{39}{9}.\dfrac{-1}{7}\)