\(\dfrac{1}{38}\)+ \(\dfrac{1}{40}\)+\(\dfrac{1}{42}\)+... +\(\dfrac{1}{50}\) hãy so sánh với 1
Tính biểu thức sau:
A= ( -1-3-5-7-...-2017)
các bạn chỉ ra các bước tính ở 2 dạng này giùm mình với! mình ko biết 2 dạng này tính sao hết ak! giúp mk nữa!
cảm ơn nhiều nha!!!!!!!!!
\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)
=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)
Vậy tổng trên bé hơn 1
A=-1-3-5-...-2017
=-(1+3+5+...+2017)
Xét tổng B=1+3+5+...+2017
Tổng B có:(2017-1):2+1=1009(số hạng)
Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)
=>A=-B=-1018081
\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}\) có: \(\left(50-38\right):2+1\)= \(7\) (số hạng)
Ta có: \(\dfrac{1}{38}< \dfrac{1}{7};\dfrac{1}{40}< \dfrac{1}{7};\dfrac{1}{42}< \dfrac{1}{7};...;\dfrac{1}{50}< \dfrac{1}{7}\)
=> \(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{7}+\dfrac{1}{7}+...+\dfrac{1}{7}\)( 7 số hạng)
=> \(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{7}{7}=1\)
Vậy: \(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}< 1\)
A= (-1-3-5-7-...-2017)
A= 1+3+5+7+...+2017
A có: (2017-1):2+1=1009 (số hạng)
Tổng A = \(\dfrac{\left(2017+1\right).1009}{2}=1018081\)
A=1018081