Tính:
\(\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{3}-1\right):\left(\dfrac{1}{4}-1\right):\) ... : \(\left(\dfrac{1}{50}-1\right)\)
Chứng minh rằng:
\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{50}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}+\dfrac{1}{102}\right)=\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}\)
a)\(\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{3}-1\right):...:\left(\dfrac{1}{50}-1\right)=-\dfrac{1}{2}:\left(-\dfrac{2}{3}\right):\left(-\dfrac{3}{4}\right)...:\left(-\dfrac{49}{50}\right)=-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)\cdot\left(-\dfrac{4}{3}\right)...\left(-\dfrac{50}{49}\right)=-\dfrac{1\cdot3\cdot4...50}{2\cdot3\cdot...\cdot49}=-\dfrac{50}{2}=-25\)
b)Sai đề bạn xem lại và đăng lại mình giải cho