Câu a : Ta có : \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
Thay \(x=\left(\sqrt{2}-1\right)^2\) vào A ta được :
\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{1+\sqrt{\left(\sqrt{2}-1\right)^2}}=\frac{\sqrt{2}-1}{1+\sqrt{2}-1}=\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}\)
Câu b :
\(B=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(10-5\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{1}{\sqrt{x}-2}\)